TUGAS BESAR KONTROL KUMBUNG BUDIDAYA JAMUR

  


[menuju akhir]





1. Pendahuluan [kembali]

Dalam era modern yang serba otomatis, inovasi dalam bidang teknologi pertanian semakin berkembang pesat. Salah satu contoh konkret dari penerapan teknologi dalam pertanian adalah sistem kontrol penyiram tanaman otomatis. Sistem ini dirancang untuk memudahkan petani dalam mengelola irigasi lahan pertanian mereka, meningkatkan efisiensi penggunaan air, serta mengurangi tenaga kerja manual. Tugas besar kali ini akan fokus pada perancangan dan implementasi rangkaian kontrol penyiram tanaman, yang merupakan salah satu aplikasi praktis dari konsep-konsep elektronika yang telah dipelajari.

Rangkaian kontrol penyiram tanaman yang dirancang memanfaatkan sensor kelembaban tanah untuk mendeteksi tingkat kelembaban di sekitar tanaman. Ketika kelembaban tanah berada di bawah tingkat yang telah ditentukan, mikrokontroler akan mengaktifkan pompa air untuk menyiram tanaman hingga kelembaban tanah kembali ke level yang diinginkan. Setelah itu, pompa air akan otomatis dimatikan. Sistem ini tidak hanya efektif dalam menjaga tanaman tetap terhidrasi dengan baik, tetapi juga menghemat penggunaan air dan mengurangi intervensi manusia.

Selain sensor kelembaban tanah dan mikrokontroler, rangkaian ini juga akan dilengkapi dengan komponen lain seperti relay untuk mengontrol pompa air, sumber daya listrik yang stabil, serta indikator LED untuk memberikan informasi visual tentang status sistem. Dengan memanfaatkan teknologi ini, petani dapat memastikan bahwa tanaman mereka mendapatkan jumlah air yang cukup secara konsisten, tanpa perlu mengkhawatirkan penyiraman manual yang mungkin tidak efisien atau terlewatkan.


2. Tujuan [kembali]

  • Mempelajari rangkaian dari aplikasi Aritmatik, Flip-Flop dan Decoder
  • Mampu mensimulasikan rangkaian "Kontrol Kumbung Untuk Jamur Tiram" menggunakan software Proteus
  • Mampu menjelaskan prinsip kerja rangkaian dari "Kontrol Kumbung Untuk Jamur Tiram"
    

3. Alat dan Bahan [kembali] 

 A. Alat
  • Voltmeter

  • Baterai

  •  Power Supply

 
  • DC Voltmeter


 B. Bahan 

  • Resistor

  •  Transistor NPN
  • Dioda

  • Relay

        
  • LED

         
  • Motor

        

  • OP-AMP LM358
         
     
  • OP-AMP LM741

        
  • Buzzer
         
  • 7-segment Common Anoda dan Katoda

         
  • Gerbang NOT
  • JK Flip-Flop (IC 74LS112)
        
  • Gerbang AND

  • Potensiometer
       
  • IC 74157
74157 IC Quad 2-input multiplexer – MECHATRONX | Electronics Store


  • IC 74157
 Jual ic TTL 74157 74LS157 DM74LS157N SN74LS157N Dip 16p - Kota Bandung -  Putra Niaga Elektronik | Tokopedia
  • IC 7483
                                       

  • PIR Sensor


  • Touch Sensor
    
        
  • Infrared Sensor
         
  • Sensor Humidity
 


     
  • Sensor LM358
  
     
  • OP-AMP LM1458

        
  • IC 4511
Jual IC 4511 DIP DRIVER BCD 7 SEGMENT - Kab. Purwakarta - Pondok Elektronik  Purwakarta | Tokopedia      
  • IC7482
7482 2-bit full Adder         
     
 
  • IC74LS48
74LS48 BCD-to-7 Segment Decoder/Driver IC - Datasheet       
      
 
  • Potensiometer



          
        

  • Gerbang XOR

Berkas:Logic-gate-xor-us.png - Wikipedia bahasa Indonesia, ensiklopedia  bebas

    

  • Inverter (Not)




     
 

  • Switch/Button


           
  • Ground


4. Dasar Teori [kembali]

  • a. Resistor

    Resistor merupakan komponen elektronika dasar yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian.Sesuai dengan namanya, resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Resistor memiliki simbol seperti gambar dibawah ini :


    Simbol Resistor

    Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :


    Dimana V adalah tegangan,  I adalah kuat arus, dan R adalah Hambatan.

    Di dalam resistor, terdapat ketentuan untuk membaca nilai resistor yang diwakili dengan kode warna dengan ketentuan di bawah ini :



    Sebagian besar resistor yang kita lihat memiliki empat pita berwarna . Oleh karena itu ada cara membacanya seperti ketentuan dibawah ini :
    1. Dua pita pertama dan kedua menentukan nilai dari resistansi
    2. Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.
    3. Dan terakhir, pita keempat menentukan nilai toleransi.


    Rumus Resistor:

    Seri : Rtotal = R1 + R2 + R3 + ….. + Rn

    Dimana :
    Rtotal = Total Nilai Resistor
    R1 = Resistor ke-1
    R2 = Resistor ke-2
    R3 = Resistor ke-3
    Rn = Resistor ke-n

    Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

    Dimana :
    Rtotal = Total Nilai Resistor
    R1 = Resistor ke-1
    R2 = Resistor ke-2
    R3 = Resistor ke-3
    Rn = Resistor ke-n

    b. Transistor NPN
    Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:
    Simbol Transistor NPN BC547


    Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:

    Rumus dari Transitor adalah :

    hFE = iC/iB

    dimana, iC = perubahan arus kolektor 

    iB = perubahan arus basis 

    hFE = arus yang dicapai


    Rumus dari Transitor adalah :

    Karakteristik Input

    Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.

    Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

     Pemberian bias 
            Ada beberapa macam rangkaian pemberian bias, yaitu: 
     1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.


    2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.


    Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

    Gelombang I/O Transistor
                        


    c. Dioda
    Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
    Gambar Simbol Dioda

    Cara Kerja Dioda

    Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

    A. Kondisi tanpa tegangan

    Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.

    B. Kondisi tegangan positif (Forward-bias)

    Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.

    C. Kondisi tegangan negatif (Reverse-bias)

    Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.

    3. Rumus

    rumus

    d. Relay
    Relay merupakan komponen elektronika berupa saklar atau switch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. 

    e. LED

    Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

        Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya.  Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube.

    Simbol dan Bentuk LED (Light Emitting Diode)
    Bentuk dan Simbol LED (Light Emitting Diode)


    Cara Kerja LED (Light Emitting Diode)

    Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

    LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

    Cara kerja LED (Light Emitting Diode)

    LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya

    f. Motor DC

    Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

        Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti



    Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

    g. IC OP-AMP

    Simbol 

     

     
    Berfungsi sebagai penguat atau pembanding tegangan input dengan output.

     

     

    Karakteristik IC OpAmp

    • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
    • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
    • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
    • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
    • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
    • Karakteristik tidak berubah dengan suhu
                                                                               

    Karakteristik IC OpAmp

    • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
    • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
    • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
    • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
    • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
    • Karakteristik tidak berubah dengan suhu

    Inverting Amplifier


     Rumus:

    NonInverting

     Rumus:

    Komparator

    Rumus:

    Adder

    Rumus:

    Bentuk Gelombang


    h. 7-segment


    Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

        Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

        Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.

    Tabel Pengaktifan Seven Segment Display



    i. Gerbang NOT

    Gerbang logika NOT adalah gerbang logika yang bisa melakukan operasi peniadaan logika atau pembalik keadaan logika. Karena hal itulah, maka gerbang logika ini dinamakan gerbang logika NOT. Gerbang logika NOT juga dikenal sebagai rangkaian inverter. Gerbang logika NOT bisa ditemukan pada komponen listrik IC 7404.

    j. JK Flip-Flop (IC 74LS112)
    JK flip-flop adalah perangkat memori bit tunggal dua status sekuensial yang dinamai menurut penemunya oleh Jack Kil. Secara umum memiliki satu pin input clock (CLK), dua pin input data (J dan K), dan dua pin output (Q dan Q̅) seperti yang ditunjukkan pada Gambar 1. JK flip-flop dapat dipicu pada tepi depan dari jam atau di tepi belakangnya dan karenanya dapat dipicu oleh sisi positif atau negatif, masing-masing.  



    k. Buzzer
    Pada dasarnya, prinsip kerja dari buzzer elektronika hampir sama dengan loud speaker dimana buzzer juga terdiri dari kumparan yang terpasang secara diafragma. Ketika kumparan tersebut dialiri listrik maka akan menjadi elektromagnet sehingga mengakibatkan kumparan tertarik ke dalam ataupun ke luar tergantung dari arah arus dan polaritas magnetnya. Karena kumparan dipasang secara diafragma maka setiap kumparan akan menggerakkan diafragma tersebut secara bolak-balik sehingga membuat udara bergetar yang akan menghasilkan suara.

    Namun dibandingkan dengan loud speaker, buzzer elektronika relatif lebih mudah untuk digerakkan. Sebagai contoh, buzzer elektronika dapat langsung diberikan tegangan listrik dengan taraf tertentu untuk dapat menghasilkan suara. Hal ini tentu berbeda dengan loud speaker yang memerlukan rangkaian penguat khusus untuk menggerakkan speaker agar menghasilkan suara yang dapat didengar oleh manusia.

    l. Gerbang XOR
     Gerbang OR ini akan menghasilkan output 1 jika semua atau salah satu input merupakan bilangan biner 1. Sedangkan output akan menghasilkan 0 jika semua inputnya adalah bilangan biner 0.Logic gate OR
    j. Potensiometer
    Potensiometer adalah resistor tiga terminal dengan sambungan geser yang membentuk pembagi tegangan dapat disetel. Jika hanya dua terminal yang digunakan, potensiometer berperan sebagai resistor variabel atau Rheostat

    k. IC 7447
    Merupakan IC TTL  Decoder BCD to 7 Segment. IC ini berfungsi untuk mengubah kode bilangan biner BCD (Binary Coded Decimal) menjadi data tampilan untuk penampil/display 7 segment  yang bekerja pada tegangan TTL (+5 volt DC).
    • Jalur input data BCD, pin input ini terdiri dari 4 line input yang mewakili 4 bit data BCD dengan sebutan jalur input A, B, C dan D.
    • Jalur ouput 7 segmen, pin output ini berfungsi untuk  mendistribusikan data pengkodean ke penampil 7 segmen. Pin output dekoder BCD ke 7 segmen ini ada 7 pin yang masing-masing diberi nama a, b, c, d, e, f dan g.
    • Jalur LT (Lamp Test) yang berfunsi untuk menyalakan semua led pada penampil 7 segmen, jalur LT akan aktif pad saat diberikan logika LOW pad jalut LT tersebut.
    • Jalur RBI (Riple Blanking Input) yang berfungsi untuk menahan sinyal input (disable input), jalur RBI akan aktif bila diberikan logika LOW.
    • Jalur RBO (Riple blanking Output) yang berfungsi untuk menahan data output ke penampil 7 segmen (disable output), jalur RBO ini akan aktif pada sat diberikan logika LOW

    Dalam aplikasi decoder, ketiga jalur kontorl (LT, RBI dan RBO) harus diberikan logika HIGH dengan tujuan data input BCD dapat masuk dan penampil 7 segmen dapat menerima data tampilan sesuai data BCD yang diberikan pada jalur input.

    IC 7447 biasanya dipasangkan dengan 7 segment common anode. Hal ini dikarenakan output untuk IC 7447 berlogika low.

    l. IC 7483
    IC 7483 memiliki input dan output yang sama dengan rangkaian Full Adder IC 7483, hanya saja input A ditambahkan gerbang Ex-Ordengan nilai Carry inputnya (C0), fungsi rangkaiannya pun berbeda. Fungsi dari rangkaian ini adalah sebagai penjumlah dan pengurang, hal ini ditentukan dari inputC0. Ketika input C0 diberi logik 0 maka fungsi darirangkaian ini adalah sebagai penjumlah (Adder), sedangkan ketika input C0 diberi logik 1 maka fungsi dari rangkaian ini adalah sebagai pengurang (Subtractor).

    m. Touch Sensor
    Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor).


    Grafik Respon :

    n. Thermal Sensor
    Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.

     

    Berikut ini adalah karakteristik dari sensor LM35:

    Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.

    Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC

     Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.

     Bekerja pada tegangan 4 sampai 30 volt.

     Memiliki arus rendah yaitu kurang dari 60 µA.

     Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.

     Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.

     Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.

     

    Sensor suhu ini terkalibrasi dalam satuan celcius dan mampu membaca nilai suhu dari 0˚C100˚C dan memiliki paraeter bahwa setiap kenaikan 1˚C tegangan keluaran naik sebesar 10mV dengan batas maksimal keluaran sensor adalah 1,5V pada suhu 150˚C. Pada perancangan menggunakan mikrokontroler ATmega8535, ADC yang digunakan adalah 10 bit, artinya data yang dihasilkan dari konversi adalah 0-1023. Untuk mengeluarkan output ADC dari mikrokontroler menggnakan rumus sebagai berikut : Hasil konversi ADC = (Vin*1024)/Vref Hasil output sensor kemudian akan diolah oleh mikrokontroler ATmega8535 yang kemudian nilainya akan ditampilkan pada layar lcd. Pada perancangan kakikakinya, kaki 1 terhubung power (0-5V), pin 2 sebagai output sensor yang akan terhubung dengan mikrokontroller ATmega8535, sedangkan pin 3 terhubung dengan ground.


                                                
    Grafik Respon :



    o. Sound Sensor
    Sensor suara merupakan module sensor yang mensensing besaran suara untuk diubah menjadi besaran listrik yang akan dioleh mikrokontroler. Module ini bekerja berdasarkan prinsip kekuatan gelombang suara yang masuk. Dimana gelombang suara tersebut mengenai membran sensor, yang berefek pada bergetarnya membran sensor. Dan pada membran tersebut terdapat kumparan kecil yang dapat menghasilkan besaran listrik.

    Kecepatan bergeraknya membran tersebut juga akan menentukan besar kecilnya daya listrik yang akan dihasilkan. Komponen utama untuk sensor ini yaitu condeser mic sebagai penerima besar kecilnya suara yang masuk. Berikut gambar dari condeser mic :


    Grafik Respon :
    Respon frekuensi (frequency response) microphone didefinisikan sebagai rentang suara (dari frekuensi terendah hingga tertinggi) yang dapat dihasilkan dan variasinya di antara rentang tersebut.


    Pada grafik dibawah dapat disimpulkan bahwa makin tinggi frekuensi maka semakin tinggi tingkat sensitivitasnya, atau bisa dikatakan berbanding lurus


    p. PIR Sensor
    Sensor PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah dari luar.


    Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.



    Pada grafik tersebut : (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda, (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan, (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR. Namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR.



    Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR. 

    q. Sensor Humidity

    Kelembaban merupakan salah satu hal yang bisa mempengaruhi kondisi cuaca terhadap suatu daerah. Sensor kelembaban merupakan alat pengukur untuk mendefinisikan suatu kelembaban uap air yang terkandung di dalam udara. Ada dua jenis kelembaban yang akan diukur, yaitu : 

    1.      Kelembaban Absolut

    Kelembaban absolut menjadi sebuah bilangan yang merujuk pada hitungan gram uap air yang tertampung pada 1 meter kubik udara. 

    2.      Kelembaban Relatif

    Kelembaban relatif merupakan bilangan untuk menunjukkan seberapa persen perbandingan antara uap air yang tersedia di dalam udara pada saat pengukuran dan volume uap air maksimal yang akan tertampung oleh udaranya. 

    Grafik respon:


     
    • Decoder (IC 4511)



        IC 4511 umumnya digunakan dalam berbagai aplikasi elektronik di mana ada kebutuhan untuk menampilkan angka desimal pada tampilan 7-segment, seperti penghitung digital, timer, kalkulator, dan papan skor. IC ini menyederhanakan pengendalian tampilan 7-segment dengan mengonversi masukan BCD menjadi sinyal kontrol segmen yang sesuai, sehingga menjadi pilihan populer untuk aplikasi-aplikasi tersebut.

    Konfigurasi Pin Decoder:

    CD4511 - A BCD to 7-Segment Display Driver Chip

    Truth Table

    CD4511 Seven Segment Driver: Pinout, Equivalent and Truth Table

    • IC 7482




        IC 7482 adalah sebuah rangkaian logika digital yang disebut sebagai "4-bit binary full adder" dalam bahasa Inggris. Rangkaian ini umumnya dikenal sebagai penjumlah paralel biner 4-bit. Fungsinya adalah untuk menambahkan dua angka biner 4-bit dan menghasilkan hasil penjumlahan 4-bit beserta carry-out opsional.

    Here, you can see the truth table of IC 7482

    74HC83 Full Adder IC Pinout, Datasheet, Equivalent & Working

    • IC 7483


       IC 7483 adalah sebuah rangkaian logika digital yang disebut sebagai "4-bit binary full adder dengan mode Carry Look-Ahead (CLA)" dalam bahasa Inggris. IC ini berfungsi sebagai penjumlah biner 4-bit dengan menggunakan metode carry look-ahead, yang memungkinkan penjumlahan cepat dan efisien dari dua angka biner 4-bit.

    Here, you can see the truth table of IC 7482
     
    IC 7483 Pin Diagram, Truth Table, Applications - ETechnoG
      • IC 74157

        

      IC 74157 adalah sebuah multiplexer 2-ke-1 dengan pilihan data yang dikendalikan oleh decoder 2-ke-4. Dalam bahasa Inggris, IC ini dikenal sebagai "2-to-1 Data Selector/Multiplexer with 2-to-4 Decoder."

      Here, you can see the truth table of IC 7482
       74HC157 Multiplexer IC Pinout, Features, Equivalent & Datasheet
      • IC 74LS48
        

      IC 74157 adalah sebuah multiplexer 2-ke-1 dengan pilihan data yang dikendalikan oleh decoder 2-ke-4. Dalam bahasa Inggris, IC ini dikenal sebagai "2-to-1 Data Selector/Multiplexer with 2-to-4 Decoder."

      Here, you can see the truth table of IC 7482
       7 Segment Decoder Implementation, Truth Table, Logisim Diagram | Quickgrid

    4. Percobaan[Back]
    A. Langkah-langkah Percobaan
    Siapkan seluruh alat dan bahan yang akan digunakan di Proteus
    Rangkailah semua alat dan seperti rangkaian dibawah pada software Proteus
    Hubungkan semua komponen
    Atur nilai variable (tengang, arus, dll)
    Lalu tekan tombol jalankan 
    Simulasikan semua sensor yang ada
    Revisi lagi apakah ada yang kurang dari rangkaian
    Dan lakukan simulasi terakhir
    B. Gambar Rangkaian




    C. Prinsip Kerja Rangkaian
    PRINSIP KERJA SISTEM OTOMASI PERTUMBUHAN JAMUR TIRAM



    1. Sensor PIR (diletakkan di pintu bagian dalam)



    Ketika terdeteksi manusia, maka sensor akan berlogika satu, Arus akan mengalir dari vcc masuk ke sensor lalu diumpankan ke kaki non inverting op amp sebesar 5v dan diberi penguatan sebanyak 2 kali (10/10 + 1 *vin) dan menghasilkan output sebesar 10 v. Kemudian arus mengalir melewati resistor sebesar 10k dan cabang resistor yg terhubung ke vcc sebesar 100k dan menuju kaki basis. Tegangan terbaca sebesar 0.84v sehingga transistor aktif dan arus mengalir dari vcc sebesar 9v menuju relay lalu ke kolektor ke emitor dan ground. Karena relay telah aktif maka switch akan berpindahdan mengalir  ke batrai dan ke lampu untuk menghidupkan lampu, LED sebagai indikator hidup nya lampu.

    2. Sensor suhu (diletakkan di dinding ruangan)



    Suhu normal kelembapan untuk jamur tiram adalah maksimal 30 derajat, sehingga ketika terdeteksi suhu lebih dari 30 derajat maka sensor akan aktif dan mengalirkan arus vcc masuk ke sensor dan diumpankan ke kaki detektor non inverting op amp dimana pada rangkaian detektor non inverting terdapat tegangan referensi yang diatur menggunakan potensiometer dengan maksimal tegangan sebesar 1v.

    Cara mencari nilai tegangan referensi yaitu persentase potensiometer yang dipakai dikali maksimal tegangan referensi, akan didapatkan 30% x 1v = 0.30 v.

    Kemudian, di rangkaian detektor non inverting, terdapat tegangan saturasi dimana ketika tegangan input besar sama tegangan referensi maka output yang dihasilkan adalah +Vsat, namun jika nilai tegangan input kecil dari tegangan referensi maka output yang dihasilkan adalah -Vsat. Itu didapat dari rumus (+- Vsat = +- vs +2). Karena nilai tegangan input besar sama dari tegangan referensi, kita dapatkan +vsat sebesar +6.1v. Lalu diumpankan ke resistor sebesar 10k dan menghasilkan tegangan sebesar 0.77 v. Tegangan ini cukup untuk mengaktifkan transistor sehingga arus dari vcc mengalir ke relay lalu kolektor ke emitor dan ke ground. Karena ada arus mengalir, maka switch berpindah ke kiri dan arus mengalir dari batrai menuju buzzer yang akan berbunyi pertanda ruangan tidak memiliki kelembapan yg baik.

    3. Sensor Sound (diletakkan di dekat buzzer)



    Ketika terdeteksi suara buzzer, maka sensor suara akan berlogika satu dan arus akan mengalir masuk ke sensor dan keluar lalu diumpankan ke kaki non inverting op amp sebesar 5v dan diberi penguatan sebanyak 2 kali (10/10 + 1 *vin) dan menghasilkan output sebesar 10 v. Kemudian arus mengalir melewati resistor sebesar 10k dan cabang resistor yg terhubung ke vcc sebesar 100k dan menuju kaki basis. Tegangan terbaca sebesar 0.84v sehingga transistor aktif dan arus mengalir dari vcc sebesar 9v menuju relay lalu ke kolektor ke emitor dan ground. Karena relay telah aktif maka switch akan berpindah dan mengalir  ke batrai dan masuk ke motor yg akan mengaktifkan kipas angin.

    4. Touch Sensor (diletakkan di dinding dekat pintu masuk)



    Ketika terdeteksi sentuhan manusia, maka sensor akan berlogika satu dan arus akan mengalir dari vcc sebesar 7v kemudian diumpankan ke kaki non inverting op amp. Disini adalah rangkaian voltage follower yang dimana tegangan awal sama dengan tegangan akhir. Kemudian arus dilanjutkan ke resistor sebesar 1k dan ke resistor sebesar 20k lalu ke kaki basis. Karena tegangan pada transistor telah memenuhi maka transistor aktif dan arus dari vcc sebesar 8v akan mengalir ke relay lalu ke kolektor lalu ke emitor dan ke ground. Kemudian krna relay telah aktif, maka switch berpindah ke kiri dan arus akan mengalir ke motor dan mengaktifkan noze spray air untuk menyiram jamur tiram.

    5. Sensor Humidity (diletakkan di tepi rak jamur)



    Pada sensor humidity, ketika sensor mendeteksi kelembapan relative pada angka dibawah 80% maka tegangan yang dikeluarkan akan setelah detector non inverting akan berada pada angka 0 volt sehingga pada gerbang not akan berlogika 1, dan akan diteruskan ke ic 7482 yang dimana sesuai dengan tabel kebenaran maka nilai output pada S1 akan berlogika 1 dan diteruskan ke gerbang xor dan melewati resistor sebesar 1k, karena nilai tegangan yang mengalir ke kaki basis 0,88 volt maka transistor akan aktif lalu akan mengalir arus sebesar 12v, yang lalu mengalir melewati relay dan menuju kaki kolektor dan ke emitor lalu ke ground. Relay tadi akan aktif dan switch akan berpindah sehingga arus mengalir ke baterai untuk lalu mist maker akan aktif yang mana akan mengubah air menjadi kabut untuk menaikkan kelembaban dalam ruangan. Tegangan yang dikeluarkan yaitu 0,79 volt per 1 RH.

    6. Water sensor

    Rangkaian pada gambar merupakan sistem digital otomatis pengendali pompa air yang dirancang untuk mendeteksi dan mengatur ketinggian air dalam tangki menggunakan sensor air dan logika digital. Sensor air yang diletakkan di bagian luar tangki berfungsi untuk mendeteksi tinggi permukaan air. Sensor ini menghasilkan sinyal analog yang mencerminkan kondisi ketinggian air, di mana nilai pembacaan dianggap rendah jika ≤18 dan dianggap tinggi jika ≥24. Sinyal analog dari sensor ini kemudian dikirim ke rangkaian komparator berbasis op-amp non-inverting. Komparator ini membandingkan tegangan dari sensor dengan tegangan referensi tertentu untuk menghasilkan sinyal digital berupa logika tinggi (HIGH) atau rendah (LOW) yang menunjukkan kondisi air dalam tangki.

    Selanjutnya, sinyal digital dari komparator diproses menggunakan logika digital berbasis IC full adder 7482. IC ini digunakan untuk mengatur kondisi keluaran berdasarkan kombinasi input logika yang diterimanya, sesuai dengan tabel fungsi yang ditampilkan. Kombinasi input tersebut digunakan untuk memutuskan apakah pompa air harus dinyalakan atau dimatikan. Jika air dalam tangki terdeteksi rendah, maka logika keluaran akan mengaktifkan transistor penggerak relay, yang kemudian menyalakan pompa air secara otomatis. Sebaliknya, jika ketinggian air sudah mencukupi, pompa akan dimatikan untuk menghindari pemborosan atau luapan air.

    Selain itu, dalam rangkaian ini juga digunakan sistem pembagi tegangan (voltage divider) untuk mengatur tegangan sensor agar sesuai dengan kebutuhan input komparator. Pompa air yang dikendalikan melalui relay akan bekerja berdasarkan logika digital yang terbentuk dari seluruh sistem. Dengan demikian, sistem ini secara otomatis menjaga ketinggian air dalam tangki tetap dalam batas yang diinginkan, tanpa memerlukan pengawasan manual secara terus-menerus.

    7. sensor cahaya





    Rangkaian pada gambar merupakan sistem digital sederhana yang digunakan untuk mengontrol tirai secara otomatis pada kumbung jamur berdasarkan intensitas cahaya matahari. Sistem ini bekerja dengan menggunakan sensor cahaya (PD1 – APDS-9002) yang diletakkan di atap kumbung untuk mendeteksi seberapa terang cahaya di lingkungan sekitar. Sensor menghasilkan tegangan analog (Vin) yang kemudian dibandingkan dengan tegangan referensi (Vref) sebesar 0,06 V menggunakan komparator IC LM741. Dalam konsep sistem digital, perbandingan ini menghasilkan sinyal logika: jika tegangan Vin lebih besar dari Vref (Vin > 0,06 V), maka komparator menghasilkan output logika tinggi (1) yang ditandai dengan tegangan Vout berada pada kondisi saturasi positif.

    Sinyal logika tinggi ini selanjutnya diteruskan ke basis transistor NPN (Q13 – BC547), yang berfungsi sebagai saklar digital. Ketika basis transistor menerima tegangan lebih besar dari 0,6 V (Vbe > 0,6 V), transistor akan aktif (ON) dan mengalirkan arus dari kolektor ke emitter. Aliran arus ini mengaktifkan relay (RL8), yang kemudian menyalakan motor penggerak tirai untuk menutup tirai secara otomatis. Sebaliknya, jika intensitas cahaya berkurang dan tegangan dari sensor lebih kecil dari Vref (Vin < 0,06 V), maka output komparator akan berada pada logika rendah (0), transistor tidak aktif, relay mati, dan tirai tetap dalam posisi terbuka. Dengan demikian, seluruh proses ini merupakan penerapan prinsip sistem digital, di mana sinyal analog dikonversi menjadi logika digital untuk mengendalikan aktuator secara otomatis berdasarkan kondisi cahaya di sekitar kumbung.

           

5. Percobaan [kembali]

 A. Prosedur percobaan

            1. Buka aplikasi proteus
            2. Siapkan alat dan bahan pada library proteus rangkaian ini
            3. Rangkai setiap komponen 
            4. Ubah spesifikasi komponen sesuai kebutuhan
            5. Jalankan simulasi rangkaian


B. Rangkaian Simulasi dan Prinsip Kerja 

                                        


  • Rangkaian dengan Soil Moisture Sensor


  • Rangkaian dengan Rain Sensor


  • Rangkaian dengan Water Sensor


  • Rangkaian dengan Touch Sensor


  • Rangkaian dengan Vibration Sensor

  • Rangkaian dengan Sensor gp2d120 (sensor jarak)









Prinsip kerja :

  • Sensor Soil 
        Sensor  soil berfungsi untuk mendeteksi kelembaban keadaan tanah. Letaknya menancap pada tanah. Ketika potensiometer nya <= 70% yakni tanah dalam keadaan basah maka tidak akan ada arus yang mengalir hal ini menandakan lembab  sehingga tanaman tidak perlu disiram. Ketika soil sensor sensor aktif ( tanah kering  ) ditandai dengan potensiometer >70%maka sensor akan mengeluarkan tegangan sebesar +3,53V lalu di umpankan ke kaki non inverting OPAMP dan dibandingkan dengan kaki inverting karena tegangan pada kaki non inverting lebih besar maka output OPAMP plus saturasi(+) ,V referensi didapat dari Vref = Persentase potensiomneter X tegangan pada potensiometer . Rangkaian ini adalah detector non inverting dengan Vout = Aol (V1-V2). AOL untuk Op-amp 1458 sama seperti op amp lainnya, dimana terjadi penguatan yang tak terhingga kira kira 100.000 kali. Maka berlakulah rumus Vsaturasi = Vs-2.  lalu arus mengalir ke resistor lalu ke kaki base trasintor sehingga tegangan pada kaki base transistor sebesar 0,85 V dengan begitu maka transistor jadi ON ,dengan ON nya transistor maka ada nya arus yang mengalir dari supply menuju relay lalu ke kaki kolektor lalu ke emitor lalu ke ground ,dengan adanya arus yang mengaliri relay sehingga relay menjadi ON ,sehingga switch relay bergeser dari kanan ke kiri lalu ke batrai 12V dan motor bergerak sehingga pompa hidup dan tanah disiram. 
 
  • Sensor Rain
        Sensor rain berfungsi untuk mendeteksi terjadinya hujan atau tidak. Letaknya berada di atas atap teras.  Ketika air hujan jatuh ke atas atap maka sensor akan berlogika 1. Arus dari sumber tegangan sebesar +7V masuk ke sensor hujan. Sehingga arus mengalir melewati resistor 10kohm dan masuk ke kaki non inverting amplifier. Rangkaian ini berjenis non inverting amplifier yang mana pada kaki non invertingnya terbaca Vin sebesar +5V dan pada kaki invertingnya terdapat RF dan RI. Yang mana rumus dari Vout = (Rf/Ri + 1) Vi. Vout = (10/10 + 1) 5 = 10V. Arus mengalir melewati R1 sebesar 10kohm menuju ke basis transistor. Terbaca tegangan pada basis transistor (VBE) sebesar +0,83V artinya transistor telah memenuhi syarat aktiv > 0,7V.  Transistor ini memakai Emiter bias karena ada resistor di kaki emiternya sebesar 100. Arus tadi akan mengalir melewati R7 dan sumber tegangan +9V. Setelah itu arus akan menuju relay, lalu ke kaki kolektor, emitor , melewati R6 dan ke ground. Dikarenakan transistor dan relay aktiv maka switch akan berpindah dari kanan ke kiri. Arus akan mengalir menuju batrai 12V dimana terdapat 2 percabangan. Cabang 1 mengalir menuju R2 yang fungsinya untuk menghidupkan LED biru. Cabang 2 mengalir ke motor sehingga motor berputar yang mengakibatkan pintu teras tertutup sehingga hujan tidak membanjiri teras tanaman.

  • Sensor Touch
        Sensor Touch  berfungsi untuk mendeteksi terjadinya ada atau tidaknya sentuhan. Letaknya berada di dalam ruangan. Ketika ada seseorang yang menyentuh maka teras tanaman tadi akan terbuka, sensor akan berlogika 1. Arus dari sumber tegangan sebesar +7V masuk ke sensor hujan. Sehingga arus mengalir melewati resistor 10kohm dan masuk ke kaki non inverting amplifier. Rangkaian ini berjenis non inverting amplifier yang mana pada kaki non invertingnya terbaca Vin sebesar +5V dan pada kaki invertingnya terdapat RF dan RI. Yang mana rumus dari Vout = (Rf/Ri + 1) Vi. Vout = (10/10 + 1) 5 = 10V. Arus mengalir melewati R3  sebesar 1kohm menuju ke basis transistor. Terbaca tegangan pada basis transistor (VBE) sebesar +0,83V artinya transistor telah memenuhi syarat aktiv > 0,7V.  Transistor ini memakai Emiter bias karena ada resistor di kaki emiternya sebesar 100. Arus tadi akan mengalir melewati R14 dan sumber tegangan +15V. Setelah itu arus akan menuju relay, lalu ke kaki kolektor, emitor , dan ke ground. Dikarenakan transistor daktiv maka relay akan berpindah dari bawah ke atas yang menghubungan rangkaian antara sensor rain dan touch. 

  • Water sensor
        Water sensor berfungsi untuk mendeteksi tangki air dalam keadaan kosong atau penuh. Letaknya pada tangki air. Ketika potensiometer nya <= 80% yakni air tinggi/penuh maka tidak akan ada arus yang mengalir hal ini menandakan tangki dalam keadaan penuh sehingga tidak perlu diisi. Ketika water level sensor aktif ( air rendah ) ditandai dengan potensiometer >80%maka sensor akan mengeluarkan tegangan sebesar 4,02 lalu di umpankan ke kaki non inverting OPAMP dan dibandingkan dengan kaki inverting karena tegangan pada kaki non inverting lebih besar maka output OPAMP plus saturasi(+) ,V referensi didapat dari Vref = Persentase potensiomneter X tegangan pada potensiometer . Rangkaian ini adalah detector non inverting dengan Vout = Aol (V1-V2). AOL untuk Op-amp 3403 sama seperti op amp lainnya, dimana terjadi penguatan yang tak terhingga kira kira 100.000 kali. Maka berlakulah rumus Vsaturasi = Vs-2.  lalu arus mengalir ke resistor lalu ke kaki base trasintor sehingga tegangan pada kaki base transistor sebesar 0,85 V dengan begitu maka transistor jadi ON ,dengan ON nya transistor maka ada nya arus yang mengalir dari supply menuju relay lalu ke kaki kolektor lalu ke emitor lalu ke ground ,dengan adanya arus yang mengaliri relay sehingga relay menjadi ON ,sehingga switch relay bergeser dari kanan ke kiri lalu ke batrai 12V dan motor bergerak sehingga pompa air hidup dan air terisi.

  • Vibration Sensor 
        Sensor Vibration berfungsi untuk mendeteksi ada atau tidaknya getaran (Gempa). Letaknya berada di tangki air.  Ketika terdeteksi terjadinya getaran berupa gempa maka sensor akan berlogika 1. Arus dari sumber tegangan sebesar +7V masuk ke sensor vibriation. Sehingga arus mengalir melewati resistor 10kohm dan masuk ke kaki non inverting amplifier. Rangkaian ini berjenis non inverting amplifier yang mana pada kaki non invertingnya terbaca Vin sebesar +5V dan pada kaki invertingnya terdapat RF dan RI. Yang mana rumus dari Vout = (Rf/Ri + 1) Vi. Vout = (10/10 + 1) 5 = 10V. Arus mengalir melewati R25 sebesar 10kohm menuju ke basis transistor. .  Transistor ini memakai Emiter bias karena ada resistor di kaki emiternya sebesar 10kohm. Arus tadi akan mengalir melewati R27 dan sumber tegangan +15V. Setelah itu arus akan menuju relay, lalu ke kaki kolektor, emitor , melewati R26 dan ke ground. Dikarenakan transistor dan relay aktiv maka switch akan berpindah dari kanan ke kiri. Arus akan mengalir menuju batrai 9V lalu menggerakkan motor dan pipa akan tertutup secara otomatis sehingga menghindari terjadinya kebocoran pada tangki. 

  • Sensor GP2D120
        Letaknya berada di tepi taman yang berfungsi untuk mendeteksi ketika hewan mendekat. Ketika jarak <7m maka arus dari sumber tegangan sebesar +8V akan masuk ke sensor GP2D120. Sehingga arus mengalir menuju ke kaki non inverting op-amp. Tegangan yang terbaca pada kaki non inverting op-amp sebesar +2,08V. Rangkaian yang dipakai adalah rangkaian detector non inverting dimana terdapat tegangan referensi(Vref) dan tegangan input(Vin) untuk menentukan Voutputnya. Rumus mencari Vref = Persentase potensiometer dikali sumber tegangan potensiometer sebesar +5V. Jika persentase pada  potensiometernya 40% makan Vref = 2V. Terdapat 2 kondisi., yang mana di saat Vin > Vref maka dari detector yang keluar adalah Vs += 15V. Sedangkan saat Vref>vin maka dari detector yang keluar adalah Vs = -15V.  Rumus Vout = AOL (V1-V2). Diketahui Aol untuk Op amp 741 sebesdar 200.000. Vout yang didapat terlalu besar sehingga berlaku Vout = Vs-2. Vs nya +15V-2 = +13V. Hampir mendekati +14V pada rangkaian. Lalu arus mengalir melewati R12 sebesar 10kohm menuju ke kaki basis transistor. Dapat dilihat VBE atau tegangan pada kaki basis transistor sebesar 0,9 V, ini sudah memenuhi syarat sebuah transistor aktif yaknik harus > 0,7 V. Pada transistor ini memakai fixed bias karena ada resistor sebesar 220k yang terhubung dengan sumber tegangan sebesar +12V. Karena transistor telah aktif maka arus dari sumber tegangan sebesar +12V akan mengalir menuju relay lalu ke kolektor, emitor dan ground. Karena transistor aktiv makan relay juga aktiv dan switch akan berpindah dari kanan ke kiri. lalu arus mengalir menuju batrai sebesar 12V yang akan menggerakkan motor. Dengan geraknya motor tadi maka telah terdeteksi hewan yang mendekat taman sehingga pagar akan tertutup untuk melindungi tanaman dari hewan. 


C. Video Simulasi

Sensor Jarak :



Rain Sensor :


Vibration sensor :


Touch sensor :


Soil mosture sensor :


Water level sensor :



5. Download File [kembali]

 Rangkaian Tugas Besar disini
 Video simulasi sensor jarak disini
 Video simulasi rain sensor disini
 Video simulasi vibration sensor disini
 Video simulasi touch sensor disini
 Video simulasi soil mosture sensor disini
 Video simulasi water level sensor disini
 Datasheet resistor disini 
 Datasheet voltmeter disini 
 Datasheet op amp LM 741 disini
 Datasheet kapasitor disini
 Datasheet osiloskop disini
 Datasheet Transistor NPN BC547 disini
 Datasheet Motor DC disini
 Datasheet Buzzer disini
 Datasheet LED disini
 Datasheet Relay disini
 Datasheet Inductor disini
 Datasheet Baterai 12V disini
 Datasheet Potensiometer disini
 Datasheet Op-Amp 1458 disini
 Datasheet Op-Amp 3403 disini
 Datasheet Sensor Soil Moisture disini
 Datasheet Sensor Touch disini
 Datasheet Sensor Water disini
 Datasheet Sensor Rain disini
 Datasheet Sensor Vibration disini
 Datasheet Sensor Jarak(gp2d120) disini
       Library Soil Moisture Sensor disini
 Library Touch Sensor disini
 Library Rain Sensor disini
 Library Water Sensor disini
       Library Vibration Sensor disini

Tidak ada komentar:

Posting Komentar

ADAM SIRHAN

  BAHAN PRESENTASI UNTUK ELEKTRONIKA 2024 Oleh : ADAM SIRHAN NIM. 2310952036   Dosen Pengampu : Dr. Darwison, S. T., M. T. NIDN. 0014096406 ...